『组合数学』学术报告
题目:Analytic properties of several matrices related to Motzkin numbers
报告人:陈曦,大连理工大学
时间:2023/11/20(周一)11:00-12:00
#腾讯会议:668-927-373
邀请人:王岁杰
摘要:The Motzkin numbers count the number of lattice paths which go from $(0,0)$ to $(n,0)$ using steps $(1,1),(1,0)$ and $(1,-1)$ and never go below the $x$-axis. Let $M_{n,k}$ be the number of such paths with exactly $k$ horizontal steps. In this talk, we focus on several combinatorial triangular matrices related to the Motzkin triangle $[M_{n,k}]_{n,k\ge0}$, as well as their analytic properties, including the total positivity, the real-rootedness and interlacing property of the generating functions of their rows, and the asymptotic normality of these triangles.
报告人简介:陈曦,大连理工大学数学科学学院副教授、博士生导师。2015年博士毕业于大连理工大学,2012-2013年在美国密歇根州立大学联合培养一年,2019-2020年在英国伦敦大学学院公派访问一年,多次受邀访问麻省理工学院、台湾中研院等单位。研究方向为组合数学,主要研究兴趣包括组合矩阵的全正性问题和组合序列的解析性质,在《European J. Combin.》、《Discrete Math.》、《J. Algebraic Combin.》等期刊发表论文十余篇。主持国家自然科学基金青年、面上项目。