出版书籍
宋弢,曾湘祥,王爽,王建民,智能药物研发,清华大学出版社,2022(国内首本人工智能药物研发教材,京东购买链接)
Pan Zheng, Shudong Wang, Xun Wang and Xiangxiang Zeng, Artificial Intelligence in Bioinformatics and Drug Repurposing: Methods and Applications. 2022.
Xiangxiang Zeng, Alfonso Rodríguez-Patón, Molecular Computing and Bioinformatics, MDPI, 2019.
邹权,陈启安,曾湘祥,刘向荣,系统生物学中的网络分析方法,西安电子科技大学出版社,2015.
潘林强,曾湘祥,宋弢,膜计算导论,华中科技大学出版社,2012.
2024年论文
[27] Hongxin Xiang, Shuting Jin, Jun Xia, Man Zhou, Jianmin Wang, Li Zeng,Xiangxiang Zeng. An Image-enhanced Molecular Graph Representation Learning Framework, IJCAI, 2024 (CCF A)
[26] Taisong Jin; Xixi Yang; Zhengtao Yu, Han Luo, Yongmei Zhang, Feiran Jie;Xiangxiang Zeng; Min Jiang, WalkGAN: Network Representation Learning With Sequence-Based Generative Adversarial Networks, IEEE Transactions on Neural Networks and Learning Systems,2024,35(4),5684-5694. (IF: 14.255)
[25] Jiacai Yi, Shaohua Shi, Li Fu, Ziyi Yang, Pengfei Nie, Aiping Lu, Chengkun Wu, Yafeng Deng, Changyu Hsieh,Xiangxiang Zeng, Tingjun Hou, Dongsheng Cao. OptADMET: a web-based tool for substructure modifications to improve ADMET properties of lead compounds, Nature Protocols, 2024, 19(4):1105-1121. (Nature子刊)
2023年论文
[24] Yu Wang, Chao Pang, Yuzhe Wang, Junrui Jin, Jingjie Zhang,Xiangxiang Zeng, Ran Su, Quan Zou, Leyi Wei. Retrosynthesis prediction with an interpretable deep-learning framework based on molecular assembly tasks. Nature Communications 14, 6155 (2023). (Nature子刊)
[23] Shugao Chen, Ziyao Li,Xiangxiang Zeng, Guolin Ke. Amalga: Designable Protein Backbone Generation with Folding and Inverse Folding Guidance, NeurIPS, 2023 (CCF A)
[22] Bin Wu, Jinyuan Fang,Xiangxiang Zeng, Shangsong Liang, Qiang Zhang, Adaptive Compositional Continual Meta-Learning, ICML 2023 (CCF A)
[21] Xixi Yang, Li Fu, Yafeng Deng, Yuansheng Liu, Dongsheng Cao,Xiangxiang Zeng, GPMO: Gradient perturbation-based contrastive learning for molecule Optimization , IJCAI 2023. (CCF A)
[20] Peng Zhou, Zongqian Wu,Xiangxiang Zeng, Guoqiu Wen, Junbo Ma, Xiaofeng Zhu, Totally Dynamic Hypergraph Neural Network , IJCAI 2023. (CCF A)
[19] Chunyan Li, JunfengYao, Jinsong Su, Zhaoyang Liu,Xiangxiang Zeng, Chenxi Huang, LagNet: Deep Lagrangian Mechanics for Plug-and-Play Molecular Representation Learning, AAAI 2023. (CCF A)
[18] Junlin Xu, Jielin Xu, Yajie Meng, Changcheng Lu, Lijun Cai,Xiangxiang Zeng, Ruth Nussinov, Graph Embedding and Gaussian Mixture Variational Autoencoder Network for End-to-End Analysis of Single-Cell RNA-Sequencing Data. Cell Reports Methods. 2023. (Cell子刊)
2022年论文
[17]Xiangxiang Zeng, Hongxin Xiang, Linhui Yu, J Wang, Kenli Li, R Nussinov, Feixiong Cheng. Accurate prediction of molecular properties and molecular targets usinga self-supervised image representation learning framework. Nature Machine Intelligence.2022. (Nature子刊)
[16]Xiangxiang Zeng, Fei Wang, Yuan Luo, Seung-gu Kang, Jian Tang, Felice C. Lightstone, Evandro F. Fang, Wendy Cornell, Ruth Nussinov, Feixiong Cheng, Deep Generative Molecular Design Reshapes Drug Discovery, Cell Reports Medicine, 2022. (Cell子刊,IF:16.988)
[15]Xiaoqin Pan, Xuan Lin, Dongsheng Cao,Xiangxiang Zeng, Phillipe Yu, Lifang He, Feixiong Cheng. Deep learning for drug repurposing:Methods,databases, and applications. WIREs Comput Mol Sci. 2022; e1597. (IF:25.11)
[14]Chunyan Li , Junfeng Yao, Wei Wei, Zhangming Niu ,Xiangxiang Zeng, Jin Li , Jianmin Wang, Geometry-Based Molecular Generation With Deep Constrained Variational Autoencoder, IEEE Transactions on Neural Networks and Learning Systems, doi: 10.1109/TNNLS.2022.3147790.(IF:10.451)
2021年论文
[13]Guoli Xiong, Zhenxing Wu, Jiacai Yi, Li Fu, Zhijiang Yang, Changyu Hsieh, Mingzhu Yin,Xiangxiang Zeng, Chengkun Wu, Aiping Lu, XiangChen,Tingjun Hou, Dongsheng Cao, ADMETlab 2.0: an integrated online platformfor accurateand comprehensive predictions of ADMET properties, Nucleic Acids Research, 2021(IF:16.971)
[12]Shuting Jin, Zhangming Niu, Changzhi Jiang, Wei Huang, Feng Xia, Xurui Jin,Xiangrong Liu,Xiangxiang Zeng, HeTDR: Drug repositioning based on heterogeneous networks and textmining, Patterns, 2021, 2(8), 100307. (Cell Press)
[11]Chunyan Li, Jianmin Wang, Zhangming Niu, Junfeng Yao,Xiangxiang Zeng, A spatial-temporal gated attention module for molecular property prediction based on molecular geometry, Briefings in Bioinformatics, 2021 (IF:11.622)
[10]Bosheng Song, Fen Li, Yuansheng Liu,Xiangxiang Zeng, Deep learning methods for biomedical named entity recognition: a survey and qualitative comparison, Briefings in Bioinformatics, 2021 (IF:11.622)
[9]Yujie Chen, Tengfei Ma, Xixi Yang, Jianmin Wang, Bosheng Song,Xiangxiang Zeng, MUFFIN:multi-scale feature fusion fordrug–drug interaction prediction, Bioinformatics,2021 (Top Journal)
[8]Bosheng Song, Shengye Huang,Xiangxiang Zeng, The computational power of monodirectional tissue P systems with symport rules, Information and Computation, 2021,104751 (CCF A)
[7]Francis George C Cabarle,Xiangxiang Zeng, Niall Murphy,Tao Song, Alfonso Rodríguez-Patón, Xiangrong Liu, Neural-like P Systems withPlasmids,Information and Computation, 2021, 104766 (CCF A)
[6] Bosheng Song, Kenli Li,Xiangxiang Zeng, Monodirectional evolutional symport tissue P systems with promotersand celldivision, IEEE Transactions on Parallel and Distributed Systems, 2021 (CCF A)
[5] Xin Shu, Sameera Sansare, DiJin,Xiangxiang Zeng, Kai-Yu Tong, Rishikesh Pandey, RenjieZhou, Artificial‐Intelligence‐Enabled Reagent‐Free Imaging Hematology Analyzer, Advanced Intelligent Systems, 2021
2020年论文
[4]Xuan Lin, Zhe Quan, Z Wang, Tengfei Ma,Xiangxiang Zeng, KGNN: Knowledge Graph Neural Network for Drug-Drug Interaction Prediction, IJCAI 2020. (CCF A)
[3]Xiangxiang Zeng, Wen Wang, Cong Chen, Gary G.Yen, A Consensus Community-Based Particle Swarm Optimization for Dynamic Community Detection, IEEE Transactions on Cybernetics. 2020, 50(6), 2502-2513. (IF: 11.079)
[2]Xiangxiang Zeng, Xiang Song, T Ma, X Pan, Y Zhou,Y Hou, Z Zhang, Kenli Li, G Karypis, Repurpose Open Data to DiscoverTherapeutics for COVID-19 using Deep Learning, Journal of Proteome Research, 2020,19(11), 4624-4636. (Cover Article)
[1]Xiangxiang Zeng, Siyi Zhu, Weiqiang Lu, ZehuiLiu, Jin Huang, Yadi Zhou, Jiangsong Fang et al. TargetIdentification amongKnown Drugs by Deep Learning from Heterogeneous Networks.Chemical Science (2020). 11, 1775–1797. (Back Cover Article)
更多论文请见:https://scholar.google.com/citations?user=B20HBMIAAAAJ&hl=en