聚焦于设计和开发人工智能算法对大规模生物医学数据进行处理、挖掘和分析,探索疾病的机理,为加速新药研发提供重要研究方案,主要包括:
一、疾病发现
随着高通量测序技术的不断发展,积累了大量DNA序列,高效且更准确的DNA序列数据处理和分析对疾病发现有着至关重要的作用。以构建高完整性、高质量、高分辨率的基因组序列为目标,研究内容包括序列匹配、序列纠错、单倍型基因组组装等。
二、药物设计
药物设计是一门涵盖生物学、化学、药理学等多学科领域的综合性研究过程,旨在寻找并开发可用于治疗特定疾病的药物。这一过程是建立在疾病发现基础之上,是实现“精准医疗”的核心内容。研究内容包括药物靶点预测、药物性质预测、分子生成等。
国家自然科学基金面上项目,面向多肽药物设计的深度学习方法研究(62372159),2024-2027。
国家自然科学基金青年项目,高通量测序的序列数据压缩算法研究(62102140),2022-2024。
招收2024年秋季入学硕士研究生4名
2021届:周珍冉、陶雯(研究生国奖2万,发表CCF B BIB论文,阿德莱德读博)
2022届:夏忻焱(AIIM论文在投)、沈祥振(研二上学期开始微软亚洲研究院实习、发表CCF B BIB论文和中科院二区IEEE-JBHI论文)
2023届:张艺才、李津松
主要论文 (*为通讯作者)
Xiangzhen Shen, Zimeng Li,Yuansheng Liu*, Bosheng Song, Xiangxiang Zeng, PEB-DDI: A Task-Specific Dual-View Substructural Learning Framework for Drug-Drug Interaction Prediction.IEEE Journal of Biomedical and Health Informatics, 2024, 28(1): 569-579.(中科院一区)
Yuansheng Liu, Xiangzhen Shen, Yongshun Gong, Yiping Liu, Bosheng Song, Xiangxiang Zeng, Sequence Alignment/Map format: A comprehensive review of approaches and applications.Briefings in Bioinformatics, 2023, 24(5): bbad320.
Wen Tao,Yuansheng Liu*, Xuan Lin, Bosheng Song, Xiangxiang Zeng, Prediction of multi-relational drug-gene interaction via Dynamic hyperGraph Contrastive Learning.Briefings in Bioinformatics, 2023, 24(5): bbad371.
Xixi Yang, Li Fu, Yafeng Deng,Yuansheng Liu*, Dongsheng Cao*, Xiangxiang Zeng*, GPMO: Gradient perturbation-based contrastive learning for molecule optimization,IJCAI, 2023: 4940-4948. (CCF A)
Bosheng Song, Xiaoyan Luo, Xiaoli Luo,Yuansheng Liu*, Zhangming Niu*, and Xiangxiang Zeng*. Learning spatial structures of proteins improves protein-protein interaction prediction.Briefings in Bioinformatics, 2022, 23(2):bbab558.(生物信息学顶刊,中科院小类一区,IF: 11.622)ESI高被引论文
Xiangxiang Zeng, Xinqi Tu,Yuansheng Liu*, Xiangzheng Fu, Yansen Su. Toward better drug discovery with knowledge graph,Current Opinion in Structural Biology, 2022, 72, 114-126. (中科院二区) ESI高被引论文,ESI热点论文
Jingxin Dong, Mingyi Zhao,Yuansheng Liu*, Yansen Su*, Xiangxiang Zeng. Deep learning in retrosynthesis planning: datasets, models and tools,Briefings in Bioinformatics, 2022, 23(1): bbab391.(生物信息学顶刊,中科院小类一区,IF: 11.622)ESI高被引论文
Yuansheng Liu, Jinyan Li. Hamming-Shifting graph of genomic short reads: efficient construction and its application for compression.PLOS Computational Biology, 2021, 17 (7), e1009229. (生物信息学顶刊,中科院小类一区)
Yuansheng Liu, Xiaocai Zhang, Quan Zou, Xiangxiang Zeng. Minirmd: accurate and fast duplicate removal tool for short reads via multiple minimizers.Bioinformatics, 2021,37 (11), 1604-1606.(生物信息学顶刊,中科院小类一区)
Yuansheng Liu, Limsoon Wong, Jinyan Li. Allowing mutations in maximal matches boosts genome compression performance.Bioinformatics, 2020, 36(18): 4675-4681. (生物信息学顶刊,中科院小类一区)
Yuansheng Liu, Zuguo Yu, Marcel E. Dinger, Jinyan Li. Index suffix-prefix overlaps by (w, k)-minimizer to generate long contigs for reads compression.Bioinformatics, 2019, 35(12):2066-2074.(生物信息学顶刊,中科院小类一区)
Yuansheng Liu, Leo Yu Zhang, Jinyan Li. Fast detection of maximal exact matches via fixed sampling of query k-mers and Bloom filtering of index k-mers.Bioinformatics, 2019, 35(22):4560-4567.(生物信息学顶刊,中科院小类一区)